Slice Sampling on Hamiltonian Trajectories

نویسندگان

  • Benjamin Bloem-Reddy
  • John Cunningham
چکیده

Hamiltonian Monte Carlo and slice sampling are amongst the most widely used and studied classes of Markov Chain Monte Carlo samplers. We connect these two methods and present Hamiltonian slice sampling, which allows slice sampling to be carried out along Hamiltonian trajectories, or transformations thereof. Hamiltonian slice sampling clarifies a class of model priors that induce closed-form slice samplers. More pragmatically, inheriting properties of slice samplers, it offers advantages over Hamiltonian Monte Carlo, in that it has fewer tunable hyperparameters and does not require gradient information. We demonstrate the utility of Hamiltonian slice sampling out of the box on problems ranging from Gaussian process regression to Pitman-Yor based mixture models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Unifying Hamiltonian Monte Carlo and Slice Sampling

We unify slice sampling and Hamiltonian Monte Carlo (HMC) sampling, demon1 strating their connection via the Hamiltonian-Jacobi equation from Hamiltonian 2 mechanics. This insight enables extension of HMC and slice sampling to a broader 3 family of samplers, called Monomial Gamma Samplers (MGS). We provide a 4 theoretical analysis of the mixing performance of such samplers, proving that in 5 th...

متن کامل

Towards Unifying Hamiltonian Monte Carlo and Slice Sampling

We unify slice sampling and Hamiltonian Monte Carlo (HMC) sampling, demonstrating their connection via the Hamiltonian-Jacobi equation from Hamiltonian mechanics. This insight enables extension of HMC and slice sampling to a broader family of samplers, called Monomial Gamma Samplers (MGS). We provide a theoretical analysis of the mixing performance of such samplers, proving that in the limit of...

متن کامل

Appendix for Towards Unifying Hamiltonian Monte Carlo and Slice Sampling

The MG-SS for 0 < a < 1, a = 1 and a > 1 are illustrated in Figure 4. When 0 < a < 1, the conditional distribution p(yt|xt) is skewed towards the current unnormalized density value f(xt). The conditional draw of p(xt+1|yt) encourages taking samples with smaller density value (small moves), within the domain of the slice interval X. On the other hand, when a > 1, draws of yt tend to take smaller...

متن کامل

Markov Chain Monte Carlo posterior sampling with the Hamiltonian method

The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In...

متن کامل

MCMC using Hamiltonian dynamics

Hamiltonian dynamics can be used to produce distant proposals for the Metropolis algorithm, thereby avoiding the slow exploration of the state space that results from the diffusive behaviour of simple random-walk proposals. Though originating in physics, Hamiltonian dynamics can be applied to most problems with continuous state spaces by simply introducing fictitious “momentum” variables. A key...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016